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Since the National Science Foundation gave up its stewardship over
the internet in 1995, the network appears to be living a life of its own.
Routers and lines are added continuously by thousands of small and large
companies, none of which are obliged to report about their activity. This
uncontrolled and decentralized growth turned designers into explorers.
Indeed, while until recently all internet-related research has concentrat-
ed on designing better communication protocols, lately an increasing num-
ber of scientists have begun to ask an unexpected question: What exactly
did we create? One thing is clear: while entirely of human design, the web
appears to have more in common with a cell or an ecological system than
with a meticulously designed Swiss watch. Many diverse components,
each performing a specialized job, contribute to a system that evolves
and changes with an incredible speed. And we are increasingly realizing
that the lack of understanding of the internet and the WWW evolution is
not a computer science question, but is rooted in the absence of a scien-
tific framework to characterize the topology of the network behind it. 

Networks are everywhere. The brain is a network of nerve cells con-
nected by axons, and cells themselves are networks of molecules connect-
ed by biochemical reactions. Societies, too, are networks of people linked
by friendship, family relationships, and professional ties. On a larger scale,
food webs and ecosystems can be represented as networks of species.
And networks pervade technology: the internet, power grids, and trans-
portation systems are but a few examples. Even the language we are using
to convey our thoughts is itself a network of words connected by syn-
tactic relationships. 

Yet despite the importance and pervasiveness of networks, scientists
have had little understanding of their structure and properties. How do
the interactions of several malfunctioning genes in a complex genetic net-
work result in cancer? How does diffusion occur so rapidly through cer-
tain social and communications networks, leading to epidemics of diseases
and computer viruses like the Love Bug? How do some networks contin-
ue to function even after the vast majority of their nodes have failed?
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Recent research has begun to answer such questions.1 Over the past
few years, scientists from a variety of fields have discovered that complex
networks seem to have an underlying architecture that is guided by uni-
versal principles. We have found, for instance, that many networks –
from the World Wide Web to the cell’s metabolic system to the actors in
Hollywood – are dominated by a relatively small number of nodes that are
highly connected to other nodes. These important nodes, called “hubs”,
can greatly affect a network’s overall behaviour, for instance, making it re-
markably robust against accidental failures but extremely vulnerable to co-
ordinated attacks.

The Random Network Paradigm

For over 40 years science treated all complex networks as being com-
pletely random. This paradigm has its roots in the work of two Hunga-
rian mathematicians, Paul Erdôs and Alfréd Rényi, who in 1959, aiming
to describe networks seen in communications and life sciences, suggested
that we should build networks randomly.2 Their recipe was simple: take
N nodes and connect them by L randomly placed links. The simplicity
of the model and the elegance of some of the related theorems proposed
by Erdôs and Rényi have revitalized graph theory, leading to the emer-
gence of a new field in mathematics, focusing on random networks.3

An important prediction of random network theory is that despite
the fact that we place the links randomly, the resulting network is deeply
democratic, as most nodes have approximately the same number of links.
Indeed, in a random network the nodes follow a Poisson distribution
with a bell shape, and it is extremely rare to find nodes that have sig-
nificantly more or fewer links than the average node. Random networks
are also called exponential networks because the probability that a node
is connected to k other nodes decreases exponentially for large k (Fig. 1).
But the Erdôs-Rényi model raises an important question: do we believe
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that networks observed in nature are truly random? Could the internet of-
fer us the relatively fast and seamless service if the computers were random-
ly connected to each other? Or, to take a more extreme example, would
you be able to read this article if in a certain moment the chemicals in your
body would decide to react randomly to each other, bypassing the rigid
chemical web they normally obey? Intuitively the answer is no – we all
feel that behind each complex system there is an underlying network with
non-random topology. Thus our challenge is to unearth the signatures of
order from this apparent chaos of millions of nodes and links.

417

Figure 1
Random and scale-free networks 

The degree distribution of a random network follows a Poisson curve very close in
shape to the Bell Curve, telling us that most nodes have the same number of links, and
nodes with a very large number of links don’t exist (top left). Thus a random network
is similar to a national highway network, in which the nodes are the cities, and the links
are the major highways connecting them. Indeed, most cities are served by roughly the
same number of highways (bottom left). In contrast, the power law degree distribution
of a scale-free network predicts that most nodes have only a few links, held together by
a few highly connected hubs (top right). Visually this is very similar to the air traffic
system, in which a large number of small airports are connected to each other via a
few major hubs (bottom right). 

(After A.-L. Barabási, Linked)



The World Wide Web and the Internet as Complex Networks

The WWW contains over a billion documents, which represent the
nodes of this complex web. They are connected by URLs that allow us
to navigate from one document to another (Fig. 2a). To analyze its prop-

erties, we need to obtain a map, telling us how the pages link to each
other. This information is routinely collected by search engines, such as
Google or AltaVista, but they are often reluctant to share it for research
purposes. Thus we needed to obtain a map of our own. This is exactly
what we did in 1998 – we wrote a robot or web crawler that, starting
from a given webpage, collected all the outgoing links, and followed those
links to visit more pages and collect even more links.4 Through this iter-
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Figure 2a 

The nodes of the World Wide Web are web documents, each of which is identified
by an unique uniform resource locator, or URL. Most documents contain URLs that
link to other pages. These URLs represent outgoing links, three of which are shown
(blue arrows). Currently there are about 80 documents worldwide that point to our
website www.nd.edu/~networks, represented by the incoming green arrows. While we
have complete control over the number of the outgoing links, kout, from our webpage,
the number of incoming links, kin, is decided by other people, and thus characterizes
the popularity of the page. 

(After A.-L. Barabási, “The Physics of the Web”, Physics World, 2001, pp. 33–38)

4 R. Albert, H. Jeong and A.-L. Barabási, “Diameter of the World Wide Web”, Nature
401 (1999), pp. 130–131. 



ative process we mapped out a small fraction of the web.
As the WWW is a directed network, each document can be charac-

terized by the number of outgoing (kout) and incoming (kin) links. The first
quantity that we investigated was the outgoing (incoming) degree distri-
bution, which represents the probability P(k) that a randomly selected
webpage has exactly kout (kin) links. Guided by random graph theory, we
expected that P(k) would follow a Poisson distribution. Thus it was rather
surprising when the data indicated that P(k) decayed following a power
law (Fig. 2b),

P(k) ~ kγ,                                (1)

where γout ù 2.45 (γin ù 2.1). 

There are major topological differences between networks with Pois-
son or power-law connectivity distribution (as illustrated in Fig. 1). Indeed,
for random networks most nodes have approximately the same number
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Figure 2b

Left: The probability that a webpage has kin (blue) or kout (red) links follows a power
law. The results are based on a sample of over 325 000 webpages collected by Ha-
woong Jeong. Right: The degree distribution of the internet at the router level, where
k denotes the number of links a router has to other routers. This research by Ramesh
Govindan from University of Southern California is based on over 260,000 routers and
demonstrates that the internet exhibits power-law behaviour.

(After A.-L. Barabási, “The Physics of the Web”)
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of links, kø<k>, where <k> represents the average degree. The expo-
nential decay of P(k) guarantees the absence of nodes with significantly
more links than <k>. In contrast, the power-law distribution implies that
nodes with only a few links are abundant, but a small, negligible minori-
ty have a very large number of links. For example, the highway map, with
cities as nodes and highways as links, is an exponential network, as most
cities are at the intersection of two to five highways. On the other hand,
a scale-free network looks more like an airline routing map, displayed
routinely in glossy flight magazines: most airports are served only by a
few carriers, but there are a few hubs, such as Chicago or Frankfurt, from
which links emerge to almost all other U.S. or European airports, respec-
tively. Thus, just as the smaller airports, in the WWW the majority of
the documents have only a few links. These few links are not sufficient
to ensure that the network is fully connected, a function guaranteed by
a few highly connected hubs, that hold the nodes together.

While for a Poisson distribution a typical node has k ù <k> links,
the average, <k>, is not particularly significant for a power-law distri-
bution. This absence of an intrinsic scale in k prompted us to name net-
works with power-law degree distribution scale-free.5 The finding that
the WWW is a scale-free network raised an important question: would
such inhomogenous topology emerge in other complex systems as well?
Recently answer to this question came from an unexpected direction: the
internet. The internet forms a physical network, whose nodes are routers
and domains, while links represent the various physical lines, such as
phone lines, optical cables, that connect them (Fig. 2c). Due to the physical
nature of the connections, this network was expected to be different from
the WWW, where adding a link to an arbitrary remote page is as easy
as linking to a computer in the next room. To the surprise of many, the
network behind the internet also appears to follow a power law degree
distribution. This was first noticed by three brothers, Michalis, Petros, and
Christos Faloutsos, computer scientists at U.S. and Canadian universi-
ties, who analyzed the internet at the router and domain level (see Fig.
2c). In each of these cases they found that the degree distribution follows
a power law with an exponent γ=2.5 for the router network and γ=2.2
for the domain map, indicating that the wiring of the internet is also
dominated by several highly connected hubs.6



Nineteen Degrees of Separation 

Stanley Milgram, a Harvard sociologist, surprised the world in 1967
with a bold claim: in society two people are typically five to six hand-
shakes away from each other.7 That is, despite the six billion inhabitants
of our planet, we live in a “small-world”. This feature of social networks
came to be known as “six degrees of separation” after John Guare’s bril-
liant Broadway play and movie.8 On top of this, sociologists have repeat-
edly argued that nodes in social networks are grouped in small clusters,
representing circles of friends and acquaintances, in which each node is
connected to all other nodes, with only sparse links to the outside world.9

While the existence of such local clustering and small world behaviour
agrees with our intuition, these features were not expected to be relevant
beyond social systems. The question is: does the internet and the WWW
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Figure 2c

The internet is a network of routers that navigate packets of data from one computer
to another. The routers are connected to each other by various physical or wireless links
and are grouped into several domains.

(After A.-L. Barabási, “The Physics of the Web”)

7 S. Milgram, “The Small World Problem”, Psychology Today 1 (1967), pp. 60–67.
8 J. Guare, Six Degrees of Separation, New York: Vintage Books, 1990.
9 M. S. Granovetter, “The Strength of Weak Ties”, American Journal of Sociology 78 (1973),

pp. 1360–1380.



follow this paradigm? For a proper answer we need a full map of the web.
But, as Steve Lawrence and Lee Giles have shown in 1998, even the largest
search engines cover only 16% of the web.10 This is where the tools of sta-
tistical mechanics come handy – we need to infer the properties of the full
web from a finite sample. To achieve this we constructed small models
of the WWW in the computer, making sure that the link distribution
matches the measured functional form.11 Next we identified the shortest
distance between two nodes, and averaged this over all pairs of nodes,
obtaining the average node separation, d. Repeating this for networks of
different sizes, using finite size scaling, a standard procedure in statistical
mechanics, we inferred that d depends on the number of nodes, N, as
d = 0.35 + 2.06 log(N). As in 1999 the WWW had 800 million nodes,
this expression predicted that the typical shortest path between two ran-
domly selected pages is around 19 – assuming that there is such a path,
which is not guaranteed thanks to the web’s directed nature. An exten-
sive study by an IBM-Compaq-AltaVista collaboration has consequently
found that for the 200 million nodes this distance is 16 – not too far from
17 predicted by our formula for a sample of this size.12 These results clearly
indicated that the WWW represents a small world, i.e. the typical num-
ber of clicks between two webpages is around 19, despite the over billion
pages out there. And as Lada Adamic from Stanford University has shown,
the WWW displays a high degree of clustering as well, the probability
that two neighbours of a given node are linked together being much
larger than the value expected for a clustering-free random network.13

Results from our group indicated that the internet follows suit – the
typical separation between two routers is 9, i.e. a package can reach any
router within ten hops,14 and the network is highly clustered, demonstrat-
ing that the small-world paradigm has rapidly infiltrated the Earth’s newly
developing electronic skin as well.
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Evolving Networks

Why do so different systems as the physical network of the internet
or the virtual web of the WWW develop similar scale-free networks? We
have recently traced back the emergence of the power law degree dis-
tribution to two common mechanisms, absent from the classical graph
models, but present in many complex networks.15 First, traditional graph
theoretic models assumed that the number of nodes in a network is fixed.
In contrast, the WWW continuously expands by the addition of new web-
pages, or the internet grows by the installation of new routers and com-
munication links. Second, while random graph models assume that the
links are distributed randomly, most real networks exhibit preferential
attachment: there is a higher probability to connect to a node with a
large number of links. Indeed, we link our webpage with higher proba-
bility to the more connected documents on the WWW, as these are the
ones we know about; network engineers tend to connect their institution
to the internet through points where there is high bandwidth, which
inevitably implies a high number of other consumers, or links. Based on
these two ingredients, we constructed a simple model in which a new
node is added at every timestep to the network, linking to some of the
nodes present in the system (Fig. 3).16 The probability Π(k) that a new
node connects to a node with k links follows preferential attachment, i.e.

where the sum goes over all nodes. Numerical simulations indicate that
the resulting network is indeed scale-free, the probability that a node has
k links following (1) with exponent γ = 3.17 This simple model illustrates how
growth and preferential attachment jointly lead to the appearance of the
hub hierarchy: a node rich in links will increase its connectivity faster than
the rest of the nodes, since incoming nodes link to it with higher probabil-
ity, a rich-gets-richer phenomenon present in many competitive systems.
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Networks traditionally were viewed as static objects, the role of the mod-
eler being to find a way to place the links between a constant number
of nodes such that the resulting network looks similar to the network we
wish to model. In contrast, the scale-free model views networks as dynam-
ical systems, incorporating the fact that they self-assemble and evolve in
time through the addition and removal of nodes and links. Such a dynam-
ical approach follows the long tradition of physics-based modeling, aiming
to capture what nature did when it assembled these networks. The expec-
tation behind these modeling efforts is that if we capture the microscopic
processes that drive the placement of links and nodes, the structural ele-
ments and the topology will follow from these. In addition, viewing evolv-
ing networks as dynamical systems allows us to predict many of their prop-
erties analytically. 

Bose-Einstein Condensation

In most complex systems nodes vary in their ability to compete for
links. For example, some webpages, through a mix of good content and
marketing, acquire a large number of links in a short time, easily passing
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Figure 3
The birth of a scale-free network 

The scale-free topology is a natural consequence of the ever-expanding nature of real
networks. Starting from two connected nodes (top left), in each panel a new node (shown
as an empty circle) is added to the network. When deciding where to link, new nodes
prefer to attach to the more connected nodes. Thanks to growth and preferential attach-
ment, a few highly connected hubs emerge. 

(After A.-L. Barabási, Linked)



less popular sites that have been around much longer. A good example
is the Google search engine: a relatively latecomer with an excellent prod-
uct in less than two years became one of the most connected nodes of
the WWW. This competition for links can be incorporated into the scale-
free model by adding to each node a fitness, describing its ability to com-
pete for links at the expense of other nodes.18 Assigning a randomly cho-
sen fitness ηi to each node i modifies the growth rate in (3) to

The competition generated by the unequal fitness leads to multiscal-
ing: the connectivity of a given node follow ki(t) ù tβ(η), where β(η) in-
creases with η, allowing fitter nodes with large η to join the network at
some later time and overcome the older but less fit nodes.

The competitive fitness models appear to have close ties to Bose-Einstein
condensation, currently one of the most investigated problems in condensed
matter physics. Indeed, we have recently found19 that the fitness model
can be mapped exactly into a Bose gas by replacing each node with an
energy level of energy εi = e -βηi. According to this mapping, links connect-
ed to node i are replaced by particles on level εI, and the behaviour of
the Bose gas is uniquely determined by the distribution g(ε) from which
the fitnesses are selected. One expects that the functional form of g(ε) is
system dependent: the attractiveness of a router for a network engineer
comes from a rather different distribution that the fitness of a .com com-
pany competing for customers. For a wide class of fitness distributions a
fits-gets-richer phenomena emerges, in which, while the fittest node acquires
more links than its less fit counterparts, there is no clear winner. On the
other hand, certain fitness distributions can result in Bose-Einstein con-
densation, which in the network language corresponds to a winner-takes-
all phenomenon: the fittest node emerges as a clear winner, developing
a condensate by acquiring a finite fraction of the links, independent of
the size of the system. 
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The Achilles’ Heel of the Internet

As the world economy becomes increasingly dependent on the inter-
net, a much voiced concern arises: can we maintain its functionality under
inevitable failures or frequent hacker attacks? The good news is that so
far the internet has proven rather resilient against failures: while about 3%
of the routers are down at any moment, we rarely observe major dis-
ruptions. The question is, where does this robustness come from? While
there is significant error tolerance built into the protocols that govern
package switching, lately we are learning that the scale-free topology also
plays a crucial role. In trying to understand the network component of
error tolerance, we get help from percolation, a much studied field of
physics. Percolation theory tells us that the random removal of nodes from
a network will result in an inverse percolation transition: as a critical frac-
tion, ƒc, of the nodes is removed, the network should fragment into tiny,
non-communicating islands of nodes. To our considerable surprise simu-
lations on scale-free networks did not support this prediction:20 we could
remove as many as 80% of the nodes, and the remaining nodes still formed
a compact cluster. The mystery was resolved by Shlomo Havlin of Bar-
Ilan University and his collaborators, who have shown that as long as
the connectivity exponent γ is smaller than 3 (which is the case for most
real networks, including the internet) the critical threshold for fragmen-
tation is ƒc=1.21 This is a wonderful demonstration that scale-free networks
cannot be broken into pieces by the random removal of nodes. This ex-
treme robustness to failures is rooted in the inhomogeneous network topol-
ogy: as there are far more small nodes than hubs, random removal will
most likely hit these. But the removal of a small node does not create a
significant disruption in the network topology, just like the closure of a small
local airport has little impact on international air traffic, explaining the
network’s robustness against random failures. The bad news is that the in-
homogeneous topology has its drawbacks as well: scale-free networks are
rather vulnerable to attacks.22 Indeed, the absence of a tiny fraction of the
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most connected nodes will break the network into pieces. These findings
uncovered the underlying topological vulnerability of scale-free networks:
while the internet is not expected to break under the random failure of
the routers and lines, well-informed hackers can easily design a scenario
to handicap the network.

Scale-Free Epidemics

Knowledge about scale-free networks also has implications for under-
standing the spread of computer viruses, diseases, and fads. Diffusion
theories, intensively studied for decades by both epidemiologists and mar-
keting experts, predict a critical threshold for the propagation of some-
thing throughout a population. Any virus that is less virulent (or a fad that
is less contagious) than that well-defined threshold will inevitably die out,
while those above the threshold will multiply exponentially, eventually pen-
etrating the entire system.

Recently, though, Romualdo Pastor-Satorras from Unversitat Politec-
nica de Catalunya in Barcelona and Alessandro Vespignani from Indi-
ana University in Bloomington reached a startling conclusion.23 They
found that on a scale-free network the threshold is zero. That is, all virus-
es, even those that are only weakly contagious, will spread and persist in
the system. This explains why Love Bug, the most damaging virus thus
far, having shut down the British Parliament in 2000, was still the seventh
most frequent virus even a year after its introduction and supposed erad-
ication. Hubs are the key to that surprising behaviour. Because hubs are
highly connected, at least one of them will tend to be infected by any
corrupted node. And once a hub has been infected, it will broadcast the
virus to numerous other sites, eventually compromising other hubs that
will then help spread the virus throughout the entire system.

Because biological viruses spread on social networks, which in many
cases appear to be scale-free, this result suggests that scientists should
take a second look at the volumes of research written on the interplay of
network topology and epidemics. Specifically, in a scale-free contact net-
work, the traditional public-health approach of random immunization
could easily fail because it will likely neglect some of the hubs. Research
in scale-free networks suggests an alternative approach: by targeting the
hubs, or the most connected individuals, the immunizations would have
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to reach only a small fraction of the population.24 But identifying the hubs
in a social network is much more difficult than in other types of systems
like the internet. Nevertheless, Reuven Cohen and Shlomo Havlin of Bar-
Ilan University in Israel, together with Daniel ben-Avraham of Clarkson
University, New York, recently proposed a clever solution:25 immunize
a small fraction of the random acquaintances of randomly selected indi-
viduals – a procedure that selects hubs with high probability because they
are acquainted to many people. That approach, though, raises impor-
tant ethical dilemmas. For instance, even if the hubs could be identified,
should they have priority for immunizations and cures?

In many business contexts, people want to start epidemics, not stop
them. Many viral marketing campaigns, for instance, specifically try to
target hubs to spread the adoption of a product as quickly as possible.
Obviously, such a strategy is not new. As far back as the 1950s, a study
funded by the pharmaceutical giant Pfizer discovered the important role
that hubs play in how quickly a community of doctors will adopt a new
drug. Indeed, marketers have intuitively known for some time that cer-
tain customers are much more effective in spreading promotional buzz
about new products and fads. But recent work in scale-free networks pro-
vides the scientific framework and mathematical tools to probe that phe-
nomenon more rigorously.

Outlook

Although scale-free networks are surprisingly pervasive, prominent
exceptions exist. For example, the highway network and the power grid
in the United States are not scale-free. With other networks, the data are
inconclusive. The small size of food webs reliably mapped out, telling us
how species feed on each other, did not allow scientists to reach a clear
conclusion on the network’s type. The absence of large-scale connectivity
maps of the brain does not allow us to address the nature of this crucial
network either. Most networks seen in materials science, such as the crystal
lattice describing the interactions between atoms in solids, are not scale-
free either, but all atoms have the same number of links to other atoms,
leading to a quite regular network topology. 
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Perhaps even more important are the other parameters that define a
network’s structure. One such characteristic is the diameter, or path length,
of a network: the largest number of hops required to get from any node
to any other node by following the shortest route possible. Networks with
short diameters are referred to as “small-world”, and much research is
currently investigating this and other related phenomena, such as node
clustering and hierarchy.

Finally, understanding a network’s structure is just part of the story.
There might be steep costs, for instance, with the addition of each incre-
mental link to a node, which could prevent certain networks like the U.S.
highway system from becoming scale-free. In food chains, some prey are
easier to catch than others, and that fact has a profound impact on the
overall network. With social networks, links to family members are very
different in strength than links to acquaintances. For transportation, trans-
mission, and communications systems like the internet, the congestion of
traffic along specific links is a major consideration.

In essence, we have studied complex networks first by ignoring the
details of their individual links and nodes. By distancing ourselves from
those particulars, we have been able to better glimpse some of the organ-
izing principles behind these seemingly incomprehensible systems. At the
very least, knowledge from this endeavour has led to the rethinking of
many basic assumptions. In the past, for example, researchers would model
the internet as a random network to test how a new routing protocol
might affect system congestion. But, as we now know, the internet is a
scale-free system with behaviour that is dramatically different than that
of a random network. Consequently, researchers have been busy revamp-
ing the computer models they’ve been using to simulate the internet.
Similarly, knowledge of the properties of scale-free networks will be invalu-
able in a number of other fields, particularly as we move beyond network
topologies to probe the intricate and often subtle dynamics taking place
within those complex systems.

The advances discussed here represent only the tip of the iceberg.
Networks represent the architecture of the complexity. But to fully under-
stand complex systems, we need to move beyond this architecture, and
uncover the laws governing the underlying dynamical processes, such as
internet traffic or reaction kinetics in the cell. Most important, we need
to understand how these two layers of complexity, architecture and dynam-
ics, evolve together. These are all formidable challenges for physicists, biol-
ogists, and mathematicians alike, inaugurating a new era that Stephen
Hawking recently called the “century of complexity”.
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